At their core, international development programs attempt to catalyze new relationships and new ways of working among program stakeholders. For example, youth development programs may seek to connect educators to private sector employers to make skills training more demand-driven, increasing youth employability. Others may seek to steer at-risk youth toward positive role models and community services, and away from gangs, to improve their safety and resiliency. Reflecting this, an official at the United States Agency for International Development (USAID), the world’s largest bilateral international development donor, recently stated, “the design, implementation and evaluation of development programs is intrinsically about people, institutions and the relationships between them” (Baker, 2019). Many development programs, however, lack a sophisticated understanding of these relationships and a way to measure change in them. Social network analysis (SNA) is a quantitative research method that programs can use to help address this critical knowledge gap.
This policy brief advances the case for SNA in international development, outlines general approaches, and reviews two recently conducted case studies that illustrate its potential. Included is an agenda for future work and applications in international development.
Social Network Analysis
Social networks are “a set of players and patterns of exchange of information and/or goods among these players” (Annen, 2003). The intellectual home of network analysis is in sociology, where Durkheim established the study of social relationship patterns, and Granovetter advanced the importance of “weak ties” (distant acquaintances) in relational phenomena, such as successfully acquiring leads for job opportunities (Granovetter, 1973). Later, in political science, Putnam explained waning social capital in United States by the breakdown of community networks, such as bowling leagues and economic structures like labor unions (Putnam, 1995). Only recently, though, have researchers drawn on the methods and empirical basis of SNA to elevate it to a mainstream analytic tool. The rapid growth in published papers and grant funding over the past 15 years demonstrates this uptake (Popelier, 2018).
SNA is a quantitative analysis tool used to identify and understand relationships between people or, in other words, social networks. It visually displays data so researchers can see behavioral relationships at the micro level (individual, institutional) and patterns at the macro or network level. SNA has the flexibility to treat networks as both independent and dependent variables. For example, it can help answer how differences in individuals’ networks (independent variable) explain their risk for contracting COVID-19 (Firth et al., 2020) or how racially segregated schools affect a young person’s friendship networks (dependent variable) (Moody, 2001).
The data used in SNA can include secondary sources, such as social media data (connections, likes, shares, etc.); evidence of collaboration, such as co-authoring a paper; or administrative records such as school attendance, employment history, or club membership. Surveys can also collect primary data for SNA, with respondents asked to answer questions about their relationships, exchanges, and affiliations. Surveys often ask about the level of respondents’ connection to the others (i.e., frequency of communication); the nature of those exchanges (information, goods and services, collaboration); and the value the respondent assigns to them.
SNA data are typically analyzed and interpreted in two ways. First, a set of network metrics can characterize the network and quantify its dimensions. Typical network measures include density, reciprocity, transitivity, centralization, and modularity. See Figure 1 for definitions and explanations of these metrics, among others. Second, researchers can also explore and interpret social networks visually. Various software tools map the connections among network actors and produce social network graphs or “sociograms.” In these graphs, colors demark different kinds of actors, or nodes on the graph. The sizes of the nodes indicate the levels of connectedness. The position and partitioning of nodes in the network maps visualizes the network structure, including central actors, isolated actors, bridging actors, and any sub-groupings or cliques. See the Annex for more on the computing software needed and approaches to network visualization.
SNA metrics are often grouped into two categories to characterize networks by their level of (1) network closure or cohesion, measured by levels of density, reciprocity, transitivity, degree centrality, and shortest path, and (2) network heterogeneity, measured by modularity. Networks with higher levels of closure are associated with higher familiarity, trust, and social capital, and more-efficient exchange of information, goods, or services. More-heterogeneous networks are considered more effective at mobilizing resources, given that network exchanges often require coordination of many skills and various inputs across different types of actors.
For SNA to be useful or effective, it should be methodologically well-aligned to answer clear research questions. In international development, it presents a potentially useful tool for understanding a range of network relationships, including levels of collaboration and exchange; the existence of central actors; excluded populations; and absent connections among individuals, organizations, or groups. Two recent applications of SNA to international development used SNA to understand collaboration among different types of actors that programs had been unable to assess adequately in the past.
El Salvador: Research and Development Clusters for Innovation-Led Economic Growth
In 2018, a team from RTI International and Duke University conducted SNA in El Salvador to assess network connections among university, private sector, and government collaborators in distinct economic sector clusters (energy, light manufacturing, information and communications technology [ICT], and agroindustry and food processing). These clusters had been formed as a part of a 5-year USAID program in El Salvador to advance economic growth through improved higher education performance. At the time in El Salvador, university faculty generally lacked knowledge of industry trends, had few connections with employers, and, thus, were largely unaware of in-demand competencies needed for student employment. Further, faculty engaged in little research to develop applied solutions to the challenges of private industry. On the private sector side, Salvadoran employers reported difficulty in finding new hires with appropriate technical and soft skills and had difficulty sourcing innovation (Navarro et al., 2019).
To catalyze mutually beneficial relationships and overcome these challenges, the USAID program promoted a cluster approach that brought academic, private, and government actors together to develop new curricula, collaborate in research and development, and provide new career pathways for students. Each cluster included anchor and affiliate universities, industry associations and affiliated businesses, and relevant government counterparts. These cluster members met regularly across a 5-year period and accessed grant funding and technical support. Ultimately, collaborations led to 30 new industry-aligned academic degree programs. Cluster collaborators also conducted twenty-six applied research and development programs promoting technology transfer from universities to industry.
Although the program outputs were impressive, program stakeholders wanted to know the structure and strength of the cluster networks and whether the collaborations might be sustained. One month after program closure, we sent an online survey to 120 participants in the program’s four economic clusters. The survey presented respondents with a list of names from their cluster. For each name, respondents indicated their level of collaboration with that individual, if any. If collaboration was of a certain level, the respondent answered further questions about that individual. Receiving 80 responses (66% response rate), our research team used these data to assess (1) the importance of reported connections, (2) the level of prior collaborations, (3) the state of current collaborations, and (4) anticipated future collaborations.
For each network, we produced several network measures (see Table 1 for the light manufacturing cluster, as an example). Network closure increased as respondents recalled past collaboration, reported on current collaborations, and projected future collaborations. For example, the network density in light manufacturing on the collaboration measure went from 7% (past collaboration), to 14% (current collaboration), to 22% (future collaboration). Reciprocity and average shortest path displayed similar patterns. Network heterogeneity decreased slightly when comparing collaboration before and after the program. The increase in modularity, combined with an increase in density, suggests that the program especially helped grow within sector collaboration, though overall connections across sectors also grew over the course of the program.
With these data, we created network maps to visualize changes in these networks over time, as seen in Figure 2. The colors represent different clusters, with the light manufacturing sector used in Table 1 in blue. Visually, we observe in the light manufacturing graph the increasing density of connections, and the presence of several star-shaped cliques where important nodes act to connect others in the network, as seen in the average shortest path score.
These increasing levels of network closure imply stronger communication channels, more-efficient collaboration, and improved ability to prioritize collective action (Sandström & Carlsson, 2008). These networks also show moderate levels of heterogeneity, measured by modularity. Overall, these data indicate networks in El Salvador that have moderate organizational capacity and appear to be improving over time. The expectation is that these social networks will sustainably support the USAID program goals of improving the flow of information from the academic to the private sector, promoting technology transfer, and creating pathways for student internships and employment.
Indonesia: Knowledge System Connections for Better Evidence-Based Policy
Since 2012, RTI has directed a program in Indonesia called the Knowledge Sector Initiative (KSI), funded by the Australian Department of Foreign Affairs and Trade. KSI seeks to improve Indonesian public policy by strengthening systems that encourage the use of research and evidence in policy making (Hertz et al., 2020). To do this, KSI works to strengthen and connect four parts of the evidence-to-policy system:
-
Knowledge enablers: regulatory authorities, public and private funding bodies
-
Knowledge producers: universities, research centers, think tanks
-
Knowledge intermediaries: civil society, media
-
Knowledge users: policy makers, parliamentarians, government ministries
KSI operates through policy working groups that combine knowledge enablers, producers, intermediaries, and users in a particular policy area to build a body of knowledge, promote its use, and develop policy based upon it. Indonesian stakeholders and the Australian funders of KSI have an interest in understanding the strength of these networks and their changes over time.
To contribute to that understanding, RTI researchers conducted SNA in 2020 in an area KSI has prioritized: aging and elderly policy. Improving aging and elderly policy, particularly the development of “Aging-Friendly Cities” in rapidly urbanizing environments, is a World Health Organization initiative active in Indonesia (Suriastini et al., 2019). To conduct SNA in this area, we worked with an Indonesian research institute, SurveyMeter, to develop a list of 65 individuals (researchers, policy makers, journalists, and government funders of research) active in aging and elderly policy networks for each of three cities: Jakarta, Yogyakarta, and Denpasar (Bali region). To make the name rosters more manageable for survey respondents, the team randomly selected 30 names per city. Each respondent answered a set of questions about the 30-person roster: how frequently they communicated with each person, what level of collaboration they had on aging and elderly policy issues, and how much they trusted the person.
Table 2 lists the network data for the question on frequency of communication, and Figure 3 displays the network maps for these cities across the three questions.
These networks, particularly that of Jakarta, show moderate levels of closure or cohesion (healthy levels of density, reciprocity, and transitivity; low distance between nodes; and high degree centrality). They also show high heterogeneity (i.e., low modularity), as seen visually in the between-group or multicolor nodal connections. This level of network closure and network heterogeneity is associated with strong policy network organizational capacity and could lead to efficient and effective policy formation (Sandström & Carlsson, 2008). This SNA further reveals differences among locations and across the network connection questions.
Social Network Analysis and International Development: Key Recommendations
Within the international development field, the use of SNA to improve program design, program implementation, and program evaluation and learning is quite limited. USAID’s Learning Laboratory and the World Bank’s Independent Evaluation Group have both called for the increased use of SNA (Baker, 2019; Vaessen & Hamaguchi, 2017), and some recent projects have embraced these methods (Pilliard-Hellwig, 2020). Note that the examples in this brief were both conducted in relatively high-resource environments (urban areas of Indonesia and El Salvador) and among well-educated, survey-savvy respondents. Other SNA tools, such as Net-Mapping and Collaboration Mapping, can be used in lower resource environments, in situations where the network is not known, or where the network is not as bounded as those in the case examples presented here.
The field of international development needs new tools and approaches for understanding the complex relational dynamics within which it operates and changes in the networks it seeks to affect. The field can apply SNA in many contexts, such as global health (disease spread), economic growth (market relationships), and governance (policy networks). With the right approaches and improved capacity, international development projects can conduct SNA more often to improve understanding of programs and to improve outcomes.
From experiences with SNA, including the cases presented here, we recommend the following steps for integrating SNA into international development. We present it as an agenda for SNA application in international development:
-
Routinely incorporate SNA into in monitoring, evaluation, and learning processes. A project can conduct SNA at various points (i.e., baseline, middle, end) to inform program design, adaptive management, learning, and evaluation by considering network structure and network change over time. Mixing primary and secondary data and quantitative and qualitative data will augment understanding of SNA network data and visualizations. Whenever possible, SNA should be combined with other complementary analyses, such as political economy analysis. For example, SNA can add detail and texture to common political economy analyses of actors or groups with the most resources, or through whom resources are brokered. SNA can also uncover actors or groups that are relatively isolated from political-economic networks.
-
Demystify the use of SNA among program participants, donors, and practitioners. Increased use of SNA tools and corresponding reports and publications should help bring the analytic approach into the mainstream. Concerted attempts to speak in plain language and display data in clear ways will help in these efforts. Toward this end, the Annex answers some frequently asked questions.
-
Build capacity to conduct SNA. Many actors in international development lack the capacity to conduct and interpret SNA. At the stakeholder level in partner countries, international development researchers and practitioners should work to build stakeholder capacity to conduct and use SNA—this could be within project teams or among other actors with the system, such as universities and research institutes. At the same time, donors, who will ultimately fund and approve the use of these methods, need SNA capacity too. We should build on efforts by some organizations to build capacity in the community, including available SNA 101 courses (Laesecke A, de García D., 2017; Valente et al., 2015).
-
Establish norms for data collection and identity protection. Data about individuals and their interactions with others are inherently sensitive. In standard research ethics protocols, such as human subject reviews, SNA practitioners must make decisions about how or whether to anonymize data when reporting it, especially in sociograms that can make individuals visible. For many maps, indication of group or organizational affiliation is sufficient, and respondents’ names are not needed. In other cases, especially SNAs that seek to understand personalized networks, identifying network nodes by name may be unavoidable. In these cases, researchers should obtain explicit consent to disclose identity in advance.
-
Build understanding of relationships between social networks and development outcomes. SNA will be useful only to the extent it helps users understand the relationship between networks and development outcomes that matter. Knowledge of interventions that work to improve networks is essential for meaningful use of SNA in the international development field.
Ultimately, researchers must thoughtfully consider and tailor SNA to fit the country and program environment. To be sure, there will be skeptics of these methods and concerns around the cost of the analysis, computing sophistication needed, ability of local teams to conduct SNAs, and relevance of the data to program design and evaluation. It is likely, however, that SNA can be done within reasonable costs, using open access software; combined with other ongoing analyses, such as political economy analyses or more-routine monitoring and evaluation; and simplified for use by project teams by focusing on the most important metrics or visuals.
Acknowledgments
The authors acknowledge the collaboration of Jim Moody, Maria Cristina Ramos Flor, and Joe Quinn of Duke University, and Reina Duran of RTI on the El Salvador research, and Pingkan Umboh of Knowledge Sector Initiative, Wayan Suriastini of SurveyMETER, and Olga Khavjou, Alan O’Connor, and Lena Leonchuk of RTI on the Indonesia research. We thank Jana Hertz, Sarah Frazer, and Noah Flessel for their reviews.
Cover Photo: Dewi Fortuna Anwar of the Indonesia Institute of Sciences listens to Allaster Cox, Charge d’Affaires of the Australian Embassy, during a KSI policy dialogue.
Photo credit: Leander Gemilang Aswendro.